/* -*-c++-*- osgVisual - Copyright (C) 2009-2011 Torben Dannhauer * * This library is based on OpenSceneGraph, open source and may be redistributed and/or modified under * the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or * (at your option) any later version. The full license is in LICENSE file * included with this distribution, and on the openscenegraph.org website. * * osgVisual requires for some proprietary modules a license from the correspondig manufacturer. * You have to aquire licenses for all used proprietary modules. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * OpenSceneGraph Public License for more details. */ #include using namespace osg; using namespace osgVisual; NodeTrackerSpaceMouse::NodeTrackerSpaceMouse(SpaceMouse* spacemouse) : _spaceMouse(spacemouse) { _trackerMode = NODE_CENTER_AND_ROTATION; _rotationMode = TRACKBALL; _distance = 1.0; _thrown = false; _autohoming = false; _ah_init = false; _distanceDependendAV = false; TZ=0; RX=0; RY=0; RZ=0; } NodeTrackerSpaceMouse::~NodeTrackerSpaceMouse() { } void NodeTrackerSpaceMouse::setTrackNode(osg::Node* node) { if (!node) { osg::notify(osg::NOTICE)<<"NodeTrackerSpaceMouse::setTrackNode(Node*): Unable to set tracked node due to null Node*"<getParentalNodePaths(); if (!parentNodePaths.empty()) { osg::notify(osg::INFO)<<"NodeTrackerSpaceMouse::setTrackNode(Node*): Path set"<getBound(); const float minimumDistanceScale = 0.001f; _minimumDistance = osg::clampBetween( float(boundingSphere._radius) * minimumDistanceScale, 0.00001f,1.0f); osg::notify(osg::INFO)<<"Setting Tracker manipulator _minimumDistance to "<<_minimumDistance<getBound(); setHomePosition(boundingSphere._center+osg::Vec3( 0.0,-3.5f * boundingSphere._radius,0.0f), boundingSphere._center, osg::Vec3(0.0f,0.0f,1.0f), _autoComputeHomePosition); } } void NodeTrackerSpaceMouse::init(const GUIEventAdapter& ,GUIActionAdapter& ) { flushMouseEventStack(); } void NodeTrackerSpaceMouse::getUsage(osg::ApplicationUsage& usage) const { usage.addKeyboardMouseBinding("SN Tracker: Space","Toggle camera auto homing"); usage.addKeyboardMouseBinding("SN Tracker: m","Toggle Nodetracker Mode"); usage.addKeyboardMouseBinding("SN Tracker: n","Toggle distance dependend angular velocity"); usage.addKeyboardMouseBinding("SN Tracker: +","When in stereo, increase the fusion distance"); usage.addKeyboardMouseBinding("SN Tracker: -","When in stereo, reduce the fusion distance"); } bool NodeTrackerSpaceMouse::handle(const GUIEventAdapter& ea,GUIActionAdapter& us) { switch(ea.getEventType()) { case(GUIEventAdapter::PUSH): { flushMouseEventStack(); addMouseEvent(ea); if (calcMovement()) us.requestRedraw(); us.requestContinuousUpdate(false); _thrown = false; return true; } case(GUIEventAdapter::RELEASE): { if (ea.getButtonMask()==0) { double timeSinceLastRecordEvent = _ga_t0.valid() ? (ea.getTime() - _ga_t0->getTime()) : DBL_MAX; if (timeSinceLastRecordEvent>0.02) flushMouseEventStack(); if (isMouseMoving()) { if (calcMovement()) { us.requestRedraw(); us.requestContinuousUpdate(true); _thrown = true; } } else { flushMouseEventStack(); addMouseEvent(ea); if (calcMovement()) us.requestRedraw(); us.requestContinuousUpdate(false); _thrown = false; } } else { flushMouseEventStack(); addMouseEvent(ea); if (calcMovement()) us.requestRedraw(); us.requestContinuousUpdate(false); _thrown = false; } return true; } case(GUIEventAdapter::DRAG): { addMouseEvent(ea); if (calcMovement()) us.requestRedraw(); us.requestContinuousUpdate(false); _thrown = false; return true; } case(GUIEventAdapter::MOVE): { return false; } case(GUIEventAdapter::KEYDOWN): if (ea.getKey()==' ') { if (_autohoming) _autohoming=false; else _autohoming=true; return true; } if (ea.getKey()=='m') { switch(_trackerMode) { case NODE_CENTER: _trackerMode=NODE_CENTER_AND_AZIM; break; case NODE_CENTER_AND_AZIM: _trackerMode=NODE_CENTER_AND_ROTATION; break; case NODE_CENTER_AND_ROTATION: _trackerMode=NODE_CENTER; break; default: _trackerMode = NODE_CENTER; break; }; return true; } if (ea.getKey()=='n') { if (_distanceDependendAV) _distanceDependendAV=false; else _distanceDependendAV=true; return true; } return false; case(GUIEventAdapter::FRAME): if (_thrown) { if (calcMovement()) us.requestRedraw(); } computeHomePosition(); computePosition(_homeEye, _homeCenter, _homeUp); if (calcMovementSpaceMouse()) us.requestRedraw(); return false; default: return false; } } bool NodeTrackerSpaceMouse::isMouseMoving() { if (_ga_t0.get()==NULL || _ga_t1.get()==NULL) return false; static const float velocity = 0.1f; float dx = _ga_t0->getXnormalized()-_ga_t1->getXnormalized(); float dy = _ga_t0->getYnormalized()-_ga_t1->getYnormalized(); float len = sqrtf(dx*dx+dy*dy); float dt = _ga_t0->getTime()-_ga_t1->getTime(); return (len>dt*velocity); } void NodeTrackerSpaceMouse::flushMouseEventStack() { _ga_t1 = NULL; _ga_t0 = NULL; } void NodeTrackerSpaceMouse::addMouseEvent(const GUIEventAdapter& ea) { _ga_t1 = _ga_t0; _ga_t0 = &ea; } void NodeTrackerSpaceMouse::setByMatrix(const osg::Matrixd& matrix) { osg::Vec3d eye,center,up; matrix.getLookAt(eye,center,up,_distance); computePosition(eye,center,up); } void NodeTrackerSpaceMouse::computeNodeWorldToLocal(osg::Matrixd& worldToLocal) const { osg::NodePath nodePath; if (_trackNodePath.getNodePath(nodePath)) { worldToLocal = osg::computeWorldToLocal(nodePath); } } void NodeTrackerSpaceMouse::computeNodeLocalToWorld(osg::Matrixd& localToWorld) const { osg::NodePath nodePath; if (_trackNodePath.getNodePath(nodePath)) { localToWorld = osg::computeLocalToWorld(nodePath); } } void NodeTrackerSpaceMouse::computeNodeCenterAndRotation(osg::Vec3d& nodeCenter, osg::Quat& nodeRotation) const { if (_trackNodePath.empty()) return; osg::Matrixd localToWorld; computeNodeLocalToWorld(localToWorld); osg::NodePath nodePath; if (_trackNodePath.getNodePath(nodePath) && !nodePath.empty()) nodeCenter = osg::Vec3d(nodePath.back()->getBound().center())*localToWorld; else nodeCenter = osg::Vec3d(0.0f,0.0f,0.0f)*localToWorld; switch(_trackerMode) { case(NODE_CENTER_AND_AZIM): { CoordinateFrame coordinateFrame = getCoordinateFrame(nodeCenter); osg::Matrixd localToFrame(localToWorld*osg::Matrixd::inverse(coordinateFrame)); double azim = atan2(-localToFrame(0,1),localToFrame(0,0)); osg::Quat nodeRotationRelToFrame, rotationOfFrame; nodeRotationRelToFrame.makeRotate(-azim,0.0,0.0,1.0); rotationOfFrame = coordinateFrame.getRotate(); nodeRotation = nodeRotationRelToFrame*rotationOfFrame; break; } case(NODE_CENTER_AND_ROTATION): { // scale the matrix to get rid of any scales before we extract the rotation. double sx = 1.0/sqrt(localToWorld(0,0)*localToWorld(0,0) + localToWorld(1,0)*localToWorld(1,0) + localToWorld(2,0)*localToWorld(2,0)); double sy = 1.0/sqrt(localToWorld(0,1)*localToWorld(0,1) + localToWorld(1,1)*localToWorld(1,1) + localToWorld(2,1)*localToWorld(2,1)); double sz = 1.0/sqrt(localToWorld(0,2)*localToWorld(0,2) + localToWorld(1,2)*localToWorld(1,2) + localToWorld(2,2)*localToWorld(2,2)); localToWorld = localToWorld*osg::Matrixd::scale(sx,sy,sz); nodeRotation = localToWorld.getRotate(); break; } case(NODE_CENTER): default: { CoordinateFrame coordinateFrame = getCoordinateFrame(nodeCenter); nodeRotation = coordinateFrame.getRotate(); break; } } } osg::Matrixd NodeTrackerSpaceMouse::getMatrix() const { osg::Vec3d nodeCenter; osg::Quat nodeRotation; computeNodeCenterAndRotation(nodeCenter,nodeRotation); return osg::Matrixd::translate(0.0,0.0,_distance)*osg::Matrixd::rotate(_rotation)*osg::Matrixd::rotate(nodeRotation)*osg::Matrix::translate(nodeCenter); } osg::Matrixd NodeTrackerSpaceMouse::getInverseMatrix() const { osg::Vec3d nodeCenter; osg::Quat nodeRotation; computeNodeCenterAndRotation(nodeCenter,nodeRotation); return osg::Matrixd::translate(-nodeCenter)*osg::Matrixd::rotate(nodeRotation.inverse())*osg::Matrixd::rotate(_rotation.inverse())*osg::Matrixd::translate(0.0,0.0,-_distance); } void NodeTrackerSpaceMouse::computePosition(const osg::Vec3d& eye,const osg::Vec3d& center,const osg::Vec3d& up) { if (!_node) return; // compute rotation matrix osg::Vec3 lv(center-eye); _distance = lv.length(); osg::Matrixd lookat; lookat.makeLookAt(eye,center,up); _rotation = lookat.getRotate().inverse(); } bool NodeTrackerSpaceMouse::calcMovement() { // return if less then two events have been added. if (_ga_t0.get()==NULL || _ga_t1.get()==NULL) return false; double dx = _ga_t0->getXnormalized()-_ga_t1->getXnormalized(); double dy = _ga_t0->getYnormalized()-_ga_t1->getYnormalized(); float distance = sqrtf(dx*dx + dy*dy); // return if movement is too fast, indicating an error in event values or change in screen. if (distance>0.5) { return false; } // return if there is no movement. if (distance==0.0f) { return false; } osg::Vec3d nodeCenter; osg::Quat nodeRotation; computeNodeCenterAndRotation(nodeCenter, nodeRotation); unsigned int buttonMask = _ga_t1->getButtonMask(); if (buttonMask==GUIEventAdapter::LEFT_MOUSE_BUTTON) { if (_rotationMode==TRACKBALL) { // rotate camera. osg::Vec3 axis; double angle; double px0 = _ga_t0->getXnormalized(); double py0 = _ga_t0->getYnormalized(); double px1 = _ga_t1->getXnormalized(); double py1 = _ga_t1->getYnormalized(); trackball(axis,angle,px1,py1,px0,py0); osg::Quat new_rotate; new_rotate.makeRotate(angle,axis); _rotation = _rotation*new_rotate; } else { osg::Matrix rotation_matrix; rotation_matrix.makeRotate(_rotation); osg::Vec3d lookVector = -getUpVector(rotation_matrix); osg::Vec3d sideVector = getSideVector(rotation_matrix); osg::Vec3d upVector = getFrontVector(rotation_matrix); osg::Vec3d localUp(0.0f,0.0f,1.0f); osg::Vec3d forwardVector = localUp^sideVector; sideVector = forwardVector^localUp; forwardVector.normalize(); sideVector.normalize(); osg::Quat rotate_elevation; rotate_elevation.makeRotate(dy,sideVector); osg::Quat rotate_azim; rotate_azim.makeRotate(-dx,localUp); _rotation = _rotation * rotate_elevation * rotate_azim; } return true; } else if (buttonMask==GUIEventAdapter::MIDDLE_MOUSE_BUTTON || buttonMask==(GUIEventAdapter::LEFT_MOUSE_BUTTON|GUIEventAdapter::RIGHT_MOUSE_BUTTON)) { return true; } else if (buttonMask==GUIEventAdapter::RIGHT_MOUSE_BUTTON) { // zoom model. double fd = _distance; double scale = 1.0f+dy; if (fd*scale>_minimumDistance) { _distance *= scale; } else { _distance = _minimumDistance; } return true; } return false; } bool NodeTrackerSpaceMouse::calcMovementSpaceMouse() { // TRACKBALL mode is not possible, because it uses the mouseevent, which does not happen with Spacemouse. double dTX, dTY, dTZ; // Only TZ is used later. _spaceMouse->getTranslations(dTX, dTY, dTZ); double dRX, dRY, dRZ; _spaceMouse->getRotations(dRX, dRY, dRZ); //OSG_NOTIFY( osg::INFO ) << "Recieved Spacemousevalues: dRX:" << dRX << ", dRY:" << dRY << ", dRZ:" << dRZ << ", dTX:" << dTX << std::endl; if(!_ah_init) { TZ=dTZ; RX=dRX; RY=dRY; RZ=dRZ; _ah_init=true; } if (_autohoming) // The factors are required to allow macroscopic movements. { TZ=dTZ*5; if (!_distanceDependendAV) { RX=dRX*100; RY=dRY*100; RZ=dRZ*100; } } else // NOT Autohoming { TZ+=dTZ; //OSG_NOTIFY( osg::INFO ) << "Stored Spacemousevalues: RX:" << RX << ", RY:" << RY << ", RZ:" << RZ << ", TX:" << TX << std::endl; if (_distanceDependendAV) { RX+=(dRX*800/TZ); RY+=(dRY*800/TZ); RZ+=(dRZ*800/TZ); } else { RX+=dRX; RY+=dRY; RZ+=dRZ; } } osg::Vec3d nodeCenter; osg::Quat nodeRotation; computeNodeCenterAndRotation(nodeCenter, nodeRotation); // ROTATION PART if (_rotationMode==TRACKBALL) { // return if less then two events have been added. if (_ga_t0.get()==NULL || _ga_t1.get()==NULL) return false; // rotate camera. osg::Vec3 axis; double angle; double px0 = _ga_t0->getXnormalized(); double py0 = _ga_t0->getYnormalized(); double px1 = _ga_t1->getXnormalized(); double py1 = _ga_t1->getYnormalized(); trackball(axis,angle,px1,py1,px0,py0); osg::Quat new_rotate; new_rotate.makeRotate(angle,axis); _rotation = _rotation*new_rotate; } else { osg::Matrix rotation_matrix; rotation_matrix.makeRotate(_rotation); osg::Vec3d lookVector = -getUpVector(rotation_matrix); osg::Vec3d sideVector = getSideVector(rotation_matrix); osg::Vec3d upVector = getFrontVector(rotation_matrix); osg::Vec3d localUp(0.0f,0.0f,1.0f); osg::Vec3d forwardVector = localUp^sideVector; sideVector = forwardVector^localUp; forwardVector.normalize(); sideVector.normalize(); osg::Quat rotate_elevation; rotate_elevation.makeRotate(osg::DegreesToRadians(RX*90), sideVector); osg::Quat rotate_azim; rotate_azim.makeRotate(osg::DegreesToRadians(RY*90), localUp); _rotation = _rotation * rotate_elevation * rotate_azim; } // TRANSLATION PART double scale = 1.0f+TZ/100; if (_distance*scale>_minimumDistance) { _distance *= scale; } else { TZ = (_minimumDistance/_distance - 1)*100; // Reset TZ to the value f(_minimalDistance, _distance, scale-function). _distance = _minimumDistance; } return true; } void NodeTrackerSpaceMouse::clampOrientation() { } /* * This size should really be based on the distance from the center of * rotation to the point on the object underneath the mouse. That * point would then track the mouse as closely as possible. This is a * simple example, though, so that is left as an Exercise for the * Programmer. */ const float TRACKBALLSIZE = 0.8f; /* * Ok, simulate a track-ball. Project the points onto the virtual * trackball, then figure out the axis of rotation, which is the cross * product of P1 P2 and O P1 (O is the center of the ball, 0,0,0) * Note: This is a deformed trackball-- is a trackball in the center, * but is deformed into a hyperbolic sheet of rotation away from the * center. This particular function was chosen after trying out * several variations. * * It is assumed that the arguments to this routine are in the range * (-1.0 ... 1.0) */ void NodeTrackerSpaceMouse::trackball(osg::Vec3& axis,double & angle, double p1x, double p1y, double p2x, double p2y) { /* * First, figure out z-coordinates for projection of P1 and P2 to * deformed sphere */ osg::Matrix rotation_matrix(_rotation); osg::Vec3d uv = osg::Vec3d(0.0,1.0,0.0)*rotation_matrix; osg::Vec3d sv = osg::Vec3d(1.0,0.0,0.0)*rotation_matrix; osg::Vec3d lv = osg::Vec3d(0.0,0.0,-1.0)*rotation_matrix; osg::Vec3d p1 = sv*p1x+uv*p1y-lv*tb_project_to_sphere(TRACKBALLSIZE,p1x,p1y); osg::Vec3d p2 = sv*p2x+uv*p2y-lv*tb_project_to_sphere(TRACKBALLSIZE,p2x,p2y); /* * Now, we want the cross product of P1 and P2 */ // Robert, // // This was the quick 'n' dirty fix to get the trackball doing the right // thing after fixing the Quat rotations to be right-handed. You may want // to do something more elegant. // axis = p1^p2; axis = p2^p1; axis.normalize(); /* * Figure out how much to rotate around that axis. */ double t = (p2-p1).length() / (2.0*TRACKBALLSIZE); /* * Avoid problems with out-of-control values... */ if (t > 1.0) t = 1.0; if (t < -1.0) t = -1.0; angle = inRadians(asin(t)); } /* * Project an x,y pair onto a sphere of radius r OR a hyperbolic sheet * if we are away from the center of the sphere. */ double NodeTrackerSpaceMouse::tb_project_to_sphere(double r, double x, double y) { float d, t, z; d = sqrt(x*x + y*y); /* Inside sphere */ if (d < r * 0.70710678118654752440) { z = sqrt(r*r - d*d); } /* On hyperbola */ else { t = r / 1.41421356237309504880; z = t*t / d; } return z; }